کارل فریدریش گاوس
 
آموزش نوین
ریاضیات دوره ی اول دبیرستان
درباره وبلاگ


ریاضی چگونه زیستن است
آخرین مطالب
نويسندگان
چهار شنبه 12 بهمن 1390برچسب:, :: 13:7 ::  نويسنده : محمدرضا سلطانی

کارل فریدریش گاوس

از ویکی‌پدیا، دانشنامهٔ آزاد
پرش به: ناوبری, جستجو
کارل فریدریش گاوس
زادروز ۳۰ آوریل ۱۷۷۷ (میلادی) (١١ اردیبهشت ١١٥٥ خورشیدی)
براونشوایگ، آلمان
درگذشت ۲۳ فوریه ۱۸۵۵ (میلادی) (٤ اسفند ١٢٣٤ خورشیدی)
گوتینگن
ملیت آلمانی
پیشه ریاضی دان، فیزیکدان


کارل فریدریش گاوس (به آلمانی: Carl Friedrich Gauß) ( ۳۰ آوریل ۱۷۷۷ - ۲۳ فوریه ۱۸۵۵) ریاضیدان بزرگ آلمانی است. او به عنوان یکی از برترین ریاضی دانان همه دوران شناخته شده است، و شاید بتوان گفت که برترین آنهاست. به دلیل تحقیقات و دستاوردهای بی مانند و بیشمار گاوس به او لقب شاهزاده ریاضیات را داده اند. گاوس هم به ریاضیات لقب ملکه علوم را داده بود.

محتویات

 [نهفتن

روزگار کودکی و نوجوانی [ویرایش]

گاوس، این ریاضی دان آلمانی، در خانواده‌ای محروم، در شهر برانشوایگ در ٣٠ آوریل ١٧٧٧ زاده شد. به گفته خود گاوس، مادرش روز دقيق تولدش را به خاطر نداشت. او فقط می دانست که چهارشنبه هشت روز قبل از عید پاک بوده است.

نبوغ گاوس از دوران کودکی آشکار شد. گفته می‌شود که هوش سرشار او زمانی آشکار شد که در سه سالگی اشتباهی را که پدرش در محاسبهٔ دارایی ها، بر روی کاغذ، انجام داده بود در ذهنش درست کرد. داستان دیگری که دربارهٔ هوش بسیار او گفته می‌شود آن است که آموزگارش، در دبستان، برای سرگرم کردن شاگردان به آنان گفت شماره‌های 1 تا 100 را با هم جمع کنند؛ گاوس خردسال پاسخ درست را در چند ثانیه با به کارگیری یک بینش ریاضیاتی چشمگیر به دست آورد. رهیافتی که او به کار بست چنین بود: او دانست که با جمع کردن دو به دوی عبارت‌ها از دو سر فهرست شماره‌ها پاسخ هر یک از این جمع‌ها برابر خواهد شد:

100+1=101; 99+2=101, 98+3=101, ...

برای جمع کل هم خواهیم داشت:

50×101=5050

امضای گاوس هفده ساله

در حالی كه هنوز يك نوجوان بود، گاوس به اكتشافات چشمگیری دست یافت از جمله روش کمترین مربعات برای اداره داده‌های تجربی. در ٣٠ مارس ١٧٩٦ او در سن ١٩ سالگی با نشان دادن اینکه یک ١٧-ضلعی باقاعده توسط پرگار و خط‌کش نا مدرج قابل رسم است توانست مشکلی را حل کند که ٢٠٠٠ سال قبل از آن فکر اقليدس را مغشوش کرده بود. گاوس نشان داد که یک n-ضلعی بدین صورت قابل رسم است اگر و فقط اگر n به صورت 2kp1p2...pt نوشته می شود، وقتی k geq 0 و pi اعداد اول هستند بشکل 2m + 1.

در ١٠ ژوئيه گاوس‌ نيز كشف کرد که هر عدد صحيح‌ مثبت‌ را می توان بصورت مجموع حداكثر سه عدد مثلثی (اعدادی بشکل sum^N_1 n) نوشت. سپس در دفترچه خود این كلمات معروف را نوشت: « EUREKA. number = Δ + Δ + Δ ».

 

جوانی و میان سالی [ویرایش]

گاوس در رسالهٔ دکترا خود قضیه اساسی جبر را اثبات نمود. این قضیهٔ مهم می‌گوید که هر چندجمله‌ای درجهٔ n، با به شمار آوردن ریشه‌های تکراری، دارای n جواب است. در ١٧٩٩، گاوس ثابت كرد كه mathbb{C} (اعداد مختلط) یک میدان بسته جبری است. اين امر در آن زمان بسیار مهم بود و از این روی قضیه اساسی جبر نام‌گذاری شده است. گاوس تا آخر عمرش سه اثبات دیگر بر قضیهٔ بنیادین جبر ارائه کرد.

تمبر یادبود کارل فریدریش گاوس - انتشار در سال ١٩٧٧- آلمان شرقی.

کهن سالی، مرگ و پس از آن [ویرایش]

پرتره گاوس توسط جنسون (١٨٤٠)

در فیزیک او مقالاتی در زمینهٔ نظريه لنزها و مویینگی، و همراه با ویلهلم وبر، فیزیکدان نامدار، برای ساخت دستگاه نوین مشاهدهٔ مغناطیس زمین و دگرگونی‌های آن، در ارتباط بود. نخستین مقالهٔ او در زمینهٔ الکترومغناطیس در سال ١٨٣٣ میلادی چاپ شد. ابزارهایی که آنان اختراع کردند « دستگاه انحراف مغناطیسی » و « مغناطیس سنج بایفیلار » و تلگراف الکترومغناطیسی بودند.

زندگی خانوادگی [ویرایش]

زندگی شخصی گاوس در سایهٔ مرگ زودهنگام نخستین همسرش، یوآنا اوستاف، در سال ١٨٠٩ میلادی و در پی آن مرگ پسر یک ساله اش لوییس، در سال ١٨١٠، تاریک شده بود. این رویدادها گاوس را به چنان افسردگی فرو برد که هرگز نتوانست از آن رهایی یابد.

او با یکی از دوستان همسرش که مینا والدک نام داشت ازدواج کرد، ولی این ازدواج دوم هم چندان فرخنده نبود. هنگامی که همسر دومش در سال ١٨٣١ میلادی، پس از یک بیماری طولانی، درگذشت یکی از دخترانش، ترزه، نگهداری خانه و پرستاری از گاوس را تا پایان زندگی او پذیرفت.

گاوس شش فرزند داشت.

 

منش و شخصیت [ویرایش]

گاوس به کمال در اخلاق و انسانیت باور داشت و نیز بسیار کوشا بود. او بسیار کم به نشر کارهایش می‌پرداخت چرا که از انتشار کارهایی که رسیدگی و ویرایش نشده اند سر باز می‌زد، که این هم هماهنگ با شعار « کم ولی پربار » اوست. از سوی دیگر، گاوس را از آنجا که از ریاضیدانان جوانی که خواهان پیروی از او بودند پشتیبانی نمی‌کرد نکوهش می‌کنند. او بسیار کم، و شاید هرگز، با ریاضیدان دیگری همکاری نکرد. گرچه گاوس چند دانشجو را پذیرفت ولی همه بیزاری او از تدریس را می‌دانستند (گفته شده است که او تنها در یک سخنرانی علمی حضور داشت، که در سال ١٨٢٨ میلادی در برلین برگزار شد).

جستارهای وابسته [ویرایش]


نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه:





پيوندها
 
 
 

دیکشنری آنلاین